Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Single nanopores in silicon nitride membranes are asymmetrically modified with Nafion and investigated with scanning ion conductance microscopy, where Nafion alters local ion concentrations at the nanopore. Effects of applied transmembrane potentials on local ion concentrations are examined, with the Nafion film providing a reservoir of cations in close proximity to the nanopore. Fluidic diodes based on ion concentration polarization are observed in the current-voltage response of the nanopore and in approach curves of SICM nanopipette in the vicinity of the nanopore. Experimental results are supported with finite element method simulations that detail ion depletion and enrichment of the nanopore/Nafion/nanopipette environment.more » « less
-
Abstract The arrangement of solvent molecules and ions at solid–liquid interfaces determines electrochemical properties that are important in separations platforms, sensing technologies, and energy‐storage systems. Here we show that single glass and polymer pores in contact with propylene carbonate (PC) solutions of LiClO4exhibit an effective surface potential that is modulated by the enantiomeric excess of the solvent. In particular, electrochemical and electrokinetic measurements of ionic transport through glass pipettes and polymer pores reveal that the effective surface potential is significantly lower in solutions prepared using enantiomerically pure PC than in solutions prepared using racemic PC. Both pore systems became positively charged in all racemic solutions examined in the range of LiClO4concentrations between 1 mM and 100 mM, whereas solutions in (R)‐(+)‐PC induced a positive surface potential only at concentrations above ~5 mM. The effective surface potential is quantified through asymmetry in current–voltage curves and zeta‐potential measurements. Vibrational sum‐frequency‐generation experiments on LiClO4solutions in racemic and enantiomerically pure PC indicate that the surface lipid‐bilayer‐like region in the former is more strongly organized than in the latter, dictating the favorable positions for lithium and perchlorate ions in each case. The more ordered molecular packing in the racemic liquid leads to accumulation of lithium ions on the outside of the bilayer, creating a higher effective positive charge. Our results highlight the extreme sensitivity of the interfacial potential on molecular organization of the solvent, and the relatively unexplored role that chirality can play in electrokinetic phenomena.more » « less
-
The use of hyperosmolar agents (osmotherapy) has been a major treatment for intracranial hypertension, which occurs frequently in brain diseases or trauma. However, side-effects of osmotherapy on the brain, especially on the blood–brain barrier (BBB) are still not fully understood. Hyperosmolar conditions, termed hyperosmolality here, are known to transiently disrupt the tight junctions (TJs) at the endothelium of the BBB resulting in loss of BBB function. Present techniques for evaluation of BBB transport typically reveal aggregated responses from the entirety of BBB transport components, with little or no opportunity to evaluate heterogeneity present in the system. In this study, we utilized potentiometric-scanning ion conductance microscopy (P-SICM) to acquire nanometer-scale conductance maps of Madin–Darby Canine Kidney strain II (MDCKII) cells under hyperosmolality, from which two types of TJs, bicellular tight junctions (bTJs) and tricellular tight junctions (tTJs), can be visualized and differentiated. We discovered that hyperosmolality leads to increased conductance at tTJs without significant alteration in conductance at bTJs. To quantify this effect, an automated computer vision algorithm was designed to extract and calculate conductance components at both tTJs and bTJs. Additionally, lowering Ca 2+ concentration in the bath facilitates tTJ disruption under hyperosmolality. Strengthening tTJ structure by overexpressing immunoglobulin-like domain-containing receptor 1 (ILDR1) protein abrogates the effect of hyperosmolality. We posit that osmotic stress physically disrupts tTJ structure, as evidenced by super-resolution microscopy. Findings from this study not only provide a high-resolution view of TJ structure and function, but also can inform current osmotherapy and drug delivery strategies for brain diseases.more » « less
An official website of the United States government
